Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo.
نویسندگان
چکیده
The neurodegenerative disease Friedreich's ataxia is caused by reduced levels of frataxin, a mitochondrial matrix protein. The in vivo role of frataxin is under debate. Frataxin, as well as its yeast homologue Yfh1, binds multiple iron atoms as an oligomer and has been proposed to function as a crucial iron-storage protein. We identified a mutant Yfh1 defective in iron-induced oligomerization. This mutant protein was able to replace functionally wild-type Yfh1, even when expressed at low levels, when mitochondrial iron levels were high and in mutant strains having deletions of genes that had synthetic growth defects with a YFH1 deletion. The ability of an oligomerization-deficient Yfh1 to function in vivo suggests that oligomerization, and thus oligomerization-induced iron storage, is not a critical function of Yfh1. Rather, the capacity of this oligomerization-deficient mutant to interact with the Isu protein suggests a more direct role of Yfh1 in iron-sulphur cluster biogenesis.
منابع مشابه
Iron Accumulated in Mitochondria of a YFH1 - Mutant of the Yeast Saccharomyces cerevisiae Corresponds to Inorganic Ferric Phosphate
The YFH1 gene is the yeast homologue of the human FRDA gene encoding a protein named frataxin. Mutations of the frataxin gene lead to a decreased frataxin expression causing Friedreich’s ataxia, the most common autosomal recessive neurodegenerative disease of Caucasians [1,2]. A defect in the yeast frataxin homologue leads to several S. cerevisiae phenotypes. Iron uptake is considerably higher ...
متن کاملThe molecular basis of iron-induced oligomerization of frataxin and the role of the ferroxidation reaction in oligomerization.
The role of the mitochondrial protein frataxin in iron storage and detoxification, iron delivery to iron-sulfur cluster biosynthesis, heme biosynthesis, and aconitase repair has been extensively studied during the last decade. However, still no general consensus exists on the details of the mechanism of frataxin function and oligomerization. Here, using small-angle x-ray scattering and x-ray cr...
متن کاملAn interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1.
Depletion of the mitochondrial matrix protein frataxin is the molecular cause of the neurodegenerative disease Friedreich ataxia. The function of frataxin is unclear, although recent studies have suggested a function of frataxin (yeast Yfh1) in iron/sulphur (Fe/S) protein biogenesis. Here, we show that Yfh1 specifically binds to the central Fe/S-cluster (ISC)-assembly complex, which is composed...
متن کاملThe yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins.
The mitochondrial matrix protein frataxin is depleted in patients with Friedreich's ataxia, the most common autosomal recessive ataxia. While frataxin is important for intracellular iron homeostasis, its exact cellular role is unknown. Deletion of the yeast frataxin homolog YFH1 yields mutants ((Delta)yfh1) that, depending on the genetic background, display various degrees of phenotypic defects...
متن کاملBinding of yeast frataxin to the scaffold for Fe-S cluster biogenesis, Isu.
Friedreich ataxia is caused by reduced activity of frataxin, a conserved iron-binding protein of the mitochondrial matrix, thought to supply iron for formation of Fe-S clusters on the scaffold protein Isu. Frataxin binds Isu in an iron-dependent manner in vitro. However, the biological relevance of this interaction and whether in vivo the interaction between frataxin and Isu is mediated by adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2004